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1 INTRODUCTION
The Traveling Salesman Problem (TSP) is a well-known NP-hard
problem in combinatorial optimization. It seeks the shortest tour
that visits each city exactly once and returns to the origin, with
applications ranging from logistics to circuit design.

To address its computational intractability, a wide range of
heuristics and approximation algorithms have been developed. The
MST-based 2-approximation algorithm provides theoretical guar-
antees under the triangle inequality, while greedy and local search
methods such as 2-opt offer strong empirical performance despite
lacking worst-case bounds.

In this project, we implement several classical algorithms includ-
ing Held-Karp dynamic programming, MST-based approximation,
greedy heuristics, and 2-opt refinement, as well as a novel flow-
based heuristic. This method leverages minimum-cost maximum-
flow (MCMF) to generate cycle covers, which are then refined by
2-opt. We also apply 𝑘-nearest-neighbor sparsification to improve
scalability.

Although our method is generally slower than classical heuris-
tics, its combination with 2-opt yields comparable tour quality.
Sparsification significantly reduces runtime, making the approach
more practical for larger instances.

2 PROBLEM STATEMENT
The Traveling Salesman Problem (TSP) asks: given a set of 𝑛 cities
and pairwise costs 𝑐𝑖 𝑗 , find the shortest possible tour that visits
each city exactly once and returns to the starting point. Formally,
for 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, the objective is:

min
𝜋∈𝑆𝑛

(
𝑐𝜋 (𝑛)𝜋 (1) +

𝑛−1∑︁
𝑖=1

𝑐𝜋 (𝑖 )𝜋 (𝑖+1)

)
where 𝑆𝑛 is the set of all permutations of 𝑛 elements.

2.1 Computational Complexity
TSP is a classic NP-hard problem. The decision version is NP-
complete, and the optimization version isNP-hard but not known
to be in NP. Since the number of feasible tours grows factorially,
exact algorithms quickly become infeasible as 𝑛 increases.

2.2 Approximation Motivation
Due to the problem’s intractability, various approximation algo-
rithms have been proposed for the metric TSP. MST-based methods
offer theoretical guarantees, while Greedy and 2-opt heuristics
perform well in practice. Our method builds on these ideas by
combining global flow structure with local refinement.

3 EXISTING ALGORITHMS
3.1 Held-Karp (Dynamic Programming)
The Held-Karp algorithm [6] computes the exact TSP solution via
dynamic programming by storing the minimal cost𝐶 (𝑆, 𝑗) of reach-
ing city 𝑗 through subset 𝑆 . It avoids enumerating all 𝑛! permuta-
tions by using the recurrence𝐶 (𝑆, 𝑗) = min𝑘∈𝑆\{ 𝑗 } [𝐶 (𝑆 \ { 𝑗}, 𝑘) +
𝑐𝑘 𝑗 ], with base case 𝐶 ({1, 𝑗}, 𝑗) = 𝑐1𝑗 . Assuming city 1 is the start,
the optimal tour cost is min𝑗≠1 [𝐶 ({1, . . . , 𝑛}, 𝑗) + 𝑐 𝑗1].

Algorithm 1 Held-Karp-TSP

1: for 𝑗 = 2 to 𝑛 do
2: 𝐶 [{1, 𝑗}] [ 𝑗] ← 𝑐1𝑗
3: end for
4: for 𝑠 = 3 to 𝑛 do
5: for each subset 𝑆 ⊆ {1, . . . , 𝑛} of size 𝑠 containing 1 do
6: for 𝑗 ∈ 𝑆 \ {1} do
7: 𝐶 [𝑆] [ 𝑗] ← min𝑘∈𝑆\{ 𝑗 }

(
𝐶 [𝑆 \ { 𝑗}] [𝑘] + 𝑐𝑘 𝑗

)
8: end for
9: end for
10: end for
11: Reconstruct tour 𝑇 by backtracking through 𝐶
12: return Hamiltonian tour 𝑇

Time and Space Complexity.

Time: O(𝑛2 · 2𝑛), Space: O(𝑛 · 2𝑛)
Advantages. It provides the exact optimal solution for small in-
stances.
Limitations. Its exponential time and space complexity makes it
infeasible beyond 𝑛 > 30, and it is generally superseded by solvers
like Concorde.

3.2 MST-based 2-Approximation Algorithm
This classical algorithm [1] constructs a tour with cost at most twice
the optimal, assuming the triangle inequality. It builds a minimum
spanning tree (MST), performs a preorder traversal to list the nodes,
and shortcuts repeated visits to yield a Hamiltonian tour.

Algorithm 2 MST-Based-TSP
1: Choose start node 𝑟
2: Compute MST 𝑇 rooted at 𝑟 (e.g., Prim’s algorithm)
3: Perform preorder traversal on 𝑇 to obtain path 𝑃

4: Shortcut repeated nodes in 𝑃 to construct Hamiltonian tour 𝑇
5: return tour 𝑇

Time and Space Complexity.

Time: O(𝑛2), Space: O(𝑛)
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Approximation Guarantee.
Let 𝐻∗ be the optimal tour and 𝑇 the MST. Then:

• 𝑐 (𝑇 ) ≤ 𝑐 (𝐻∗), as removing one edge from 𝐻∗ yields a span-
ning tree.
• A DFS traversal visits each MST edge twice: 𝑐 (𝑊 ) = 2𝑐 (𝑇 ) ≤
2𝑐 (𝐻∗).
• Shortcutting repeated nodes using triangle inequality yields
tour 𝐻 with:

𝑐 (𝐻 ) ≤ 𝑐 (𝑊 ) ≤ 2𝑐 (𝐻∗)

Thus, the tour cost is at most twice optimal. This is a formal 2-
approximation for metric TSP.
Advantages. It is simple to implement and offers a provable 2-
approximation guarantee under the triangle inequality.
Limitations. It can produce tours nearly twice as long as optimal
in the worst case, and the guarantee fails if the triangle inequality
does not hold.

3.3 Greedy Nearest-Neighbor Heuristic
This heuristic, originally introduced by Flood [3], builds a tour by
repeatedly visiting the closest unvisited city. Starting from an initial
node, it adds the nearest neighbor to the tour until all cities are
visited, then returns to the starting city to complete the tour.

Algorithm 3 Greedy-TSP

1: Initialize 𝑡𝑜𝑢𝑟 ← [𝑣0], 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝑣0}
2: while some cities remain unvisited do
3: Let 𝑢 be the nearest unvisited neighbor of last node in 𝑡𝑜𝑢𝑟
4: Append 𝑢 to 𝑡𝑜𝑢𝑟 , mark 𝑢 as visited
5: end while
6: Append 𝑣0 to close the tour
7: return tour 𝑇

Time and Space Complexity.

Time: O(𝑛2), Space: O(𝑛)

Approximation Behavior. Despite its simplicity, Greedy offers
no worst-case or approximation guarantee, and may produce tours
arbitrarily worse than optimal. However, it performs well on Eu-
clidean or clustered data and often performs better than MST-based
tours in practice. Recent theoretical analysis by Frieze and Peg-
den [4] further supports this behavior, showing that the average-
case performance of Greedy is significantly better than worst-case
expectations.
Advantages. It is extremely fast, easy to implement, and performs
well on Euclidean or spatially clustered inputs.
Limitations. It may still perform poorly in adversarial or non-
metric instances due to the lack of global planning.

3.4 2-Opt Local Optimization
2-opt [2] improves a tour by iteratively swapping two edges to
reduce total cost. It is commonly used for post-processing heuristic
tours.

Algorithm 4 Two-Opt

1: while any 2-swap improves cost do
2: Check all pairs of non-adjacent edges for cost-reducing

swaps
3: if a swap improves the tour then
4: Apply the swap
5: end if
6: end while
7: return improved tour 𝑇

Time and Space Complexity.

Time: O(𝑘𝑛2), Space: O(𝑛)

Empirically, 𝑘 = O(1) for structured tours and O(𝑛) for random
ones, yielding time between O(𝑛2) and O(𝑛3).
Advantages. It is an effective local search heuristic that consistently
improves tour quality.
Limitations. It may converge to local optima and can be slow
when applied to poorly constructed initial tours.

4 PROPOSED ALGORITHM
Existing heuristics like Greedy and MST tend to focus on local opti-
mization and may miss global structure. We adopt MCMF to better
capture global cost patterns by generating a one-to-one matching
across the entire set of cities. To compensate for potential loss of
local structure, we enhance the solution with Greedy-like subtour
merging and 2-opt refinement.

4.1 Flow-based Cycle Cover via MCMF
The core idea is to model the TSP as a cycle cover problem. We
construct a bipartite flow graph with two copies of the city set
and apply MCMF to find a minimum-cost one-to-one assignment
between cities. This produces a set of disjoint cycles covering all
nodes.

We then iteratively merge cycles into a single tour by connecting
the closest pair of endpoints across subtours.

Algorithm 5 Flow-Cycle-Cover-TSP
1: Construct bipartite graph with source 𝑠 , sink 𝑡 , and city sets 𝐿,

𝑅

2: Connect 𝑠 → 𝐿𝑖 and 𝑅 𝑗 → 𝑡 with capacity 1 and cost 0
3: Connect 𝐿𝑖 → 𝑅 𝑗 with capacity 1 and cost 𝑐𝑖 𝑗 for all 𝑖 ≠ 𝑗

4: Run MCMF from 𝑠 to 𝑡 to obtain flow-based matching
5: Extract subtours from flow result
6: while more than one subtour remains do
7: Merge the two closest subtours
8: end while
9: return merged tour 𝑇

Time and Space Complexity. Using SPFA [5], a queue-based
heuristic improvement over Bellman-Ford, the total complexity
becomes:

Time: O(𝑛3), Space: O(𝑛2)
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Table 1: Comparison between base and +2opt variants across datasets.

Base Tour +2-opt Applied
Dataset Opt Algorithm Length Approx Time (s) Length Approx Time (s) 2opt Iters

a280 2579

Random 33736 13.0741 - 2774 1.0756 0.022929 1368
Greedy 3157 1.2244 0.000144 2767 1.0729 0.002989 57
MST 3492 1.3540 0.000271 2908 1.1276 0.004490 80
Flow 3417 1.3251 0.016223 2705 1.0489 0.019008 66
Flow_kNN 3348 1.2979 0.006696 2696 1.0453 0.011764 82

xql662 2513

Random 53168 21.1507 - 2762 1.0989 0.277021 3945
Greedy 3124 1.2430 0.000812 2693 1.0716 0.031972 116
MST 3593 1.4299 0.001196 2763 1.0996 0.039341 237
Flow 3862 1.5373 0.064118 2719 1.0819 0.093078 267
Flow_kNN 3931 1.5640 0.034103 2737 1.0893 0.069999 301

kz9976 1061882

Random 133724845 125.9204 - 1154441 1.0868 3582.804296 119612
Greedy 1358249 1.2790 0.061593 1141502 1.0752 146.796040 3340
MST 1456572 1.3719 0.127581 1162397 1.0947 171.800400 4638
Flow 1707487 1.6081 210.406593 1138579 1.0731 537.880652 5619
Flow_kNN 1719092 1.6193 21.786337 1146693 1.0799 318.389075 6231

4.2 kNN Sparsification for Scalability
To reduce computational cost, we construct a sparse version of the
bipartite graph by retaining only the 𝑘-nearest neighbors per node.
This preserves much of the MCMF structure while significantly
improving scalability.
Time and Space Complexity.

Time: O(𝑘𝑛2), Space: O(𝑘𝑛)

In our implementation, we set 𝑘 = 20 to balance sparsity and quality
while preserving local structure for effective MCMF.

4.3 Refinement with 2-opt
The merged tour from MCMF often contains long or suboptimal
edges due to greedy merging. To improve the result, we apply 2-opt
as a post-processing step.While 2-opt is local in nature, it effectively
eliminates crossings and shortens long edges.

This combination of global structure fromMCMF and local refine-
ment from 2-opt achieves superior solution quality with moderate
additional cost.

5 EXPERIMENTS
5.1 Experimental Setup
All experiments were conducted on a MacMini (Apple M4, 16GB).
Compiled with clang++ (-std=c++17, -O2). Tested on five TSP
datasets with EUC_2D metric:
• weird20.tsp (20 cities)
• a280.tsp (280 cities)1
• xql662.tsp (662 cities)2
• kz9976.tsp (9,976 cities)3
• mona_lisa100K.tsp (100,000 cities)4

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
2https://www.math.uwaterloo.ca/tsp/vlsi/index.html
3https://www.math.uwaterloo.ca/tsp/world/countries.html
4https://www.math.uwaterloo.ca/tsp/data/ml/monalisa.html

5.2 Runtime Comparison
As shown in Table 1, runtime mainly depends on the cost of initial
tour construction and 2-opt refinement.

Greedy is the fastest, completing inmilliseconds due to its simple
nearest-neighbor rule. MST is slightly slower but remains efficient.
Flow-based methods are much more expensive; even with kNN
sparsification, they require seconds to minutes depending on in-
stance size due to the cost of solving a minimum-cost flow problem.
Full Flow becomes impractical for large instances. The cost of 2-opt
varies by initialization: Greedy and MST need fewer refinements,
while Flow-based methods often result in longer refinement time
due to less structured outputs.

5.3 Solution Quality
Before refinement, Greedy consistently outperforms other struc-
tured heuristics, achieving the lowest approximation ratios among
base tours. Despite lacking theoretical guarantees, it benefits from
strong local coherence, especially in spatially clustered instances.
MST, while offering a 2-approximation bound, often results in
longer tours due to detours inherent in its tree-based construc-
tion. Although 2-opt improves it to some extent, suboptimal edges
often remain. Flow-based methods show relatively poor perfor-
mance before refinement, primarily due to short subtours with
many repeated cycles. However, after applying 2-opt, both Flow
and Flow_kNN exhibit the largest improvements among all algo-
rithms. Post-refinement, their solution performs better than MST
and approaches that of Greedy. This large improvement is primarily
due to the poor quality of their initial solutions, which leave more
room for optimization.

The initial solution produced by MCMF often contains many
short subtours, particularly 2-node cycles. This fragmentationweak-
ens the intended global matching effect, forcing the algorithm to
rely heavily on 2-opt for recovery, which in turn increases iteration
counts and overall runtime.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
https://www.math.uwaterloo.ca/tsp/vlsi/index.html
https://www.math.uwaterloo.ca/tsp/world/countries.html
https://www.math.uwaterloo.ca/tsp/data/ml/monalisa.html
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5.4 Ablation: Flow-based Cycle Cover Variants
Table 1 highlights how 𝑘NN sparsification reduces the number of
edges processed during MCMF, achieving a clear runtime benefit.
As a result, Flow_kNN scales better than the full Flow method,
particularly on large datasets like kz9976 and mona_lisa100K.

Figure 1: Effect of 2-opt on the Flow solution for a280.

(a) Flow - a280 (b) Flow (+2opt) - a280

With Flow alone, the resulting tour may contain excessively long
edges when connecting cities. In such cases, 2-opt eliminates these
long edges by swapping segments between cities, leading to a more
efficient and compact route. This improvement is clearly visible in
Figure 1, where the post-refinement tour for a280 is significantly
cleaner and shorter.

Both kNN sparsification and 2-opt operate in O(𝑛2) time, so
their combination offers strong solution quality without increas-
ing overall complexity. We thus find that Flow_kNN + 2opt is a
practical and scalable hybrid approach.

5.5 Additional Results
To evaluate performance at scale extremes, we include results for a
small 20-city instance and a massive 100,000-city instance (Table 2).

Table 2: Held-Karp and large-scale results.

Dataset Algorithm Length Time (s)
weird20 Held-Karp 439 43.25

mona_lisa100K

Best-known Result5 5757191 -
Greedy 6846598 16.99
MST 8394831 32.03
Flow_kNN 7276478 35205.36

For weird20, we applied the Held-Karp dynamic programming
algorithm, which guarantees the exact optimal tour. Although it
becomes infeasible beyond 30 cities due to exponential runtime, it
completes in 43 seconds for this case and serves as a reference for
absolute optimality.

On mona_lisa100K, the best-known solution has length 5,757,1916.
Among our tested methods, Greedy finishes fastest (17s) with a
reasonable result.MST requires slightly more time but yields the
longest tour due to inefficient tree detours. Flow_kNN offers im-
proved quality over MST, though with significantly higher compu-
tational cost.
5https://www.math.uwaterloo.ca/tsp/data/ml/tour/monalisa_5757191.tour

Figure 2: Visual comparison of Flow_kNN and MST tours.

(a) Flow_kNN - mona_lisa100K (b) MST - mona_lisa100K

Figure 2 illustrates these differences. Flow_kNN produces a few
long edges due to early subtour merging, but most connections
are short and contribute to a lower total cost. MST shows more
uniform spacing but suffers from accumulated detour. This is a
reversal from smaller instances, where MST typically outperforms
Flow. The results suggest that global initialization becomes more
effective at scale, making Flow-based methods viable even without
refinement.

6 CONCLUSION
Summary of Findings. This report studied classical and heuris-
tic algorithms for the symmetric TSP, including Held-Karp, MST-
based 2-approximation, Greedy nearest-neighbor, and 2-opt local
search. We also introduced a novel Flow-based Cycle Cover heuris-
tic, leveraging Minimum-Cost Maximum-Flow (MCMF), enhanced
with 𝑘-nearest-neighbor sparsification and 2-opt refinement.
PerformanceAnalysis.Among traditionalmethods, Greedy achieved
the best trade-off between runtime and solution quality, outper-
forming MST in most practical scenarios despite lacking theoretical
guarantees.While the Flow-basedmethod incorporates global struc-
ture through MCMF, its effectiveness is often diminished by the
formation of short subtours, resulting in poor initial solutions and
increased reliance on 2-opt refinement.
Limitation and Future Work. The flow-based method fails to
fully exploit the global optimality potential of MCMF due to the
prevalence of short subtours, which degrade the initial solution
quality and necessitate substantial local refinement. A promising
direction is to recursively apply MCMF by treating each subtour
as a supernode and constructing a higher-level tour among them.
However, defining consistent inter-subtour distances is non-trivial,
as naive metrics may introduce ambiguity in how cycles should
be merged. Addressing this challenge could enable full tour con-
struction purely through recursive MCMF, leading to a fully global,
flow-based approximation of the TSP.

https://www.math.uwaterloo.ca/tsp/data/ml/tour/monalisa_5757191.tour
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