
CSE331 - Assignment #1
Jeonghoon Park (20201118)

UNIST
South Korea

hoonably@unist.ac.kr

Project Page: https://github.com/hoonably/Sorting-Project

1 PROBLEM STATEMENT
In many applications, sorting is a fundamental operation. While
classical algorithms such as Merge Sort and Quick Sort are widely
known, newer or specialized algorithms offer different trade-offs in
performance, stability, and space usage. The objective of this project
is to implement and evaluate 12 sorting algorithms under unified
conditions. Through benchmarking across diverse input types and
data sizes, we aim to analyze their actual runtime characteristics,
stability, and behavior with different data types. However, in real-
world scenarios, performance is not the only concern. There are
situations where stability of the sorting algorithm is required, such
as when secondary ordering must be preserved after a primary sort.
Similarly, many inputs may already be partially or fully sorted, and
some algorithms can take advantage of such structure. Moreover,
applications often involve sorting not only integers, but also long
integers, floating point numbers, or doubles. In environments with
limited memory resources, algorithms with in-place behavior or
lower space complexity may be preferable. This project investi-
gates not just the theoretical complexity, but practical trade-offs
across different algorithmic dimensions. It is designed to provide in-
sights into which algorithms perform best under which conditions,
and to expose how data characteristics influence performance and
correctness. This project focuses solely on CPU-based implementa-
tions to reveal practical algorithmic trade-offs without relying on
hardware-level optimizations.

2 BASIC SORTING ALGORITHMS
In this section, we review six classical sorting algorithms: Merge
Sort [9], Heap Sort [6], Bubble Sort [7], Insertion Sort [9], Selection
Sort [9], and Quick Sort [8].

2.1 Merge Sort
Merge Sort is a classical divide-and-conquer algorithm introduced
by John vonNeumann in 1945. It recursively splits the input array
into two halves, sorts them independently, and then merges the
sorted halves. This top-down recursive structure ensures consistent
performance across all input distributions, making it suitable for
general-purpose use.

Algorithm 1Merge Sort
1: Input: Array 𝐴, indices 𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡
2: if 𝑙𝑒 𝑓 𝑡 < 𝑟𝑖𝑔ℎ𝑡 then
3: 𝑚𝑖𝑑 ← ⌊(𝑙𝑒 𝑓 𝑡 + 𝑟𝑖𝑔ℎ𝑡)/2⌋
4: MergeSort(𝐴, 𝑙𝑒 𝑓 𝑡, 𝑚𝑖𝑑)
5: MergeSort(𝐴, 𝑚𝑖𝑑 + 1, 𝑟𝑖𝑔ℎ𝑡)
6: Merge(𝐴, 𝑙𝑒 𝑓 𝑡, 𝑚𝑖𝑑, 𝑟𝑖𝑔ℎ𝑡)

Merge Sort is particularly effective for linked lists and external
sorting (e.g., large disk-based files), as it does not rely on random
access and can process data sequentially. Time Complexity re-
mains the same in all cases: Best: 𝑂 (𝑛 log𝑛), Average: 𝑂 (𝑛 log𝑛),
Worst: 𝑂 (𝑛 log𝑛). Space Complexity is 𝑂 (𝑛) due to the auxiliary
array required for merging. Stability:Merge Sort is stable, preserv-
ing the relative order of equal elements. In-place: No; it requires
additional memory proportional to the input size.

2.2 Heap Sort
Heap Sort is a comparison-based sorting algorithm that uses a
binary heap data structure to sort elements. It first builds a max-
heap from the input array, and then repeatedly extracts the max-
imum element and moves it to the end of the array. This process
continues until the entire array is sorted in-place. The algorithm
was introduced by J. W. J. Williams in 1964 and further optimized
by R. W. Floyd.

Algorithm 2 Heap Sort
1: Input: Array 𝐴 of size 𝑛
2: BuildMaxHeap(𝐴, 𝑛)
3: for 𝑖 = 𝑛 − 1 downto 1 do
4: Swap 𝐴[0] and 𝐴[𝑖]
5: ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒 ← ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒 − 1
6: MaxHeapify(𝐴, 0, ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒)

Unlike Merge Sort, Heap Sort does not require additional mem-
ory and operates entirely in-place. However, it is not stable, as it
swaps elements without regard to their original positions. Addition-
ally, its non-sequential memory access pattern often leads to
suboptimal cache performance. Nonetheless, it provides a reliable
worst-case time complexity of 𝑂 (𝑛 log𝑛), making it suitable for
applications where guaranteed upper bounds are important. Time
Complexity in all cases is: Best: 𝑂 (𝑛 log𝑛), Average: 𝑂 (𝑛 log𝑛),
Worst:𝑂 (𝑛 log𝑛). Space Complexity is𝑂 (1) due to in-place oper-
ations. Stability: Heap Sort is not stable. In-place: Yes; it performs
sorting within the input array.

2.3 Bubble Sort
Bubble Sort is a simple comparison-based algorithm that repeatedly
steps through the array, compares adjacent elements, and swaps
them if they are in the wrong order. This process continues until the
array is fully sorted. The algorithm gets its name because smaller
elements gradually “bubble up” to the front of the array through
successive swaps.

Although it is easy to implement and understand, Bubble Sort is
highly inefficient for large datasets due to its quadratic time com-
plexity. It is primarily used for educational purposes. Although

https://github.com/hoonably/Sorting-Project

CSE331 ’25, April 2025, UNIST, South Korea Jeonghoon Park (20201118)

Algorithm 3 Bubble Sort
1: Input: Array 𝐴 of size 𝑛
2: for 𝑖 = 0 to 𝑛 − 2 do
3: for 𝑗 = 0 to 𝑛 − 𝑖 − 2 do
4: if 𝐴[𝑗] > 𝐴[𝑗 + 1] then
5: Swap 𝐴[𝑗] and 𝐴[𝑗 + 1]

it can achieve linear time 𝑂 (𝑛) when the input is already sorted,
this requires an early termination check—which is not included
in the above pseudocode. Time Complexity is: Best: 𝑂 (𝑛) (with
early termination), Average:𝑂 (𝑛2), Worst:𝑂 (𝑛2). Space Complex-
ity is 𝑂 (1), as it performs sorting in-place. Stability: Bubble Sort
is stable, preserving the order of equal elements. In-place: Yes; it
performs all swaps within the input array.

2.4 Insertion Sort
Insertion Sort builds the sorted array one element at a time by
repeatedly picking the next element from the input and inserting
it into its correct position among the previously sorted elements.
It is intuitive and performs efficiently on small or nearly sorted
datasets, making it a good choice for simple use cases or as a
subroutine in hybrid algorithms.

Algorithm 4 Insertion Sort
1: Input: Array 𝐴 of size 𝑛
2: for 𝑖 = 1 to 𝑛 − 1 do
3: 𝑘𝑒𝑦 ← 𝐴[𝑖]
4: 𝑗 ← 𝑖 − 1
5: while 𝑗 ≥ 0 and 𝐴[𝑗] > 𝑘𝑒𝑦 do
6: 𝐴[𝑗 + 1] ← 𝐴[𝑗]
7: 𝑗 ← 𝑗 − 1
8: 𝐴[𝑗 + 1] ← 𝑘𝑒𝑦

This algorithm is particularly effective when the input is already
partially sorted, as it requires fewer comparisons and shifts. In the
best case, when the array is sorted, each element is simply compared
once, resulting in linear time 𝑂 (𝑛). It is also stable and in-place,
making it well-suited for memory-constrained environments. Time
Complexity is: Best:𝑂 (𝑛) (already sorted), Average:𝑂 (𝑛2), Worst:
𝑂 (𝑛2). SpaceComplexity is𝑂 (1), as all operations are donewithin
the input array. Stability: Insertion Sort is stable. In-place: Yes;
sorting is performed in-place.

2.5 Selection Sort
Selection Sort repeatedly selects the minimum (or maximum) ele-
ment from the unsorted portion and moves it to the beginning (or
end) of the sorted portion. Unlike Insertion Sort, it performs fewer
swaps, but makes significantly more comparisons. Its structure is
simple and intuitive, which makes it useful for teaching sorting
principles, though not for performance-critical applications.

Selection Sort is inefficient for large datasets because its qua-
dratic time complexity 𝑂 (𝑛2) is incurred regardless of input
order. Furthermore, it is not stable—swapping can disrupt the
order of equal elements. However, it is in-place and performs a

Algorithm 5 Selection Sort
1: Input: Array 𝐴 of size 𝑛
2: for 𝑖 = 0 to 𝑛 − 2 do
3: 𝑚𝑖𝑛 ← 𝑖

4: for 𝑗 = 𝑖 + 1 to 𝑛 − 1 do
5: if 𝐴[𝑗] < 𝐴[𝑚𝑖𝑛] then
6: 𝑚𝑖𝑛 ← 𝑗

7: if 𝑚𝑖𝑛 ≠ 𝑖 then
8: Swap 𝐴[𝑖] and 𝐴[𝑚𝑖𝑛]

minimal number of writes, which can be useful in environments
where memory writes are costly. Time Complexity in all cases is:
Best: 𝑂 (𝑛2), Average: 𝑂 (𝑛2), Worst: 𝑂 (𝑛2). Space Complexity is
𝑂 (1), as it operates directly on the input array. Stability: Selection
Sort is not stable. In-place: Yes; sorting occurs within the input
array.

2.6 Quick Sort
Quick Sort is a divide-and-conquer algorithm that recursively parti-
tions the array around a pivot [2, pp. 170–180]. Elements less than
the pivot are moved to its left, and elements greater than the pivot
to its right. In the CLRS version, the last element is used as the
pivot, which can lead to highly unbalanced partitions on already
sorted data.

Algorithm 6 Quick Sort
1: Input: Array 𝐴, indices 𝑙𝑜𝑤 , ℎ𝑖𝑔ℎ
2: if 𝑙𝑜𝑤 < ℎ𝑖𝑔ℎ then
3: 𝑝𝑖𝑣𝑜𝑡 ← 𝐴[ℎ𝑖𝑔ℎ]
4: 𝑖 ← 𝑙𝑜𝑤 − 1
5: for 𝑗 = 𝑙𝑜𝑤 to ℎ𝑖𝑔ℎ − 1 do
6: if 𝐴[𝑗] ≤ 𝑝𝑖𝑣𝑜𝑡 then
7: 𝑖 ← 𝑖 + 1
8: Swap 𝐴[𝑖] and 𝐴[𝑗]
9: Swap 𝐴[𝑖 + 1] and 𝐴[ℎ𝑖𝑔ℎ]
10: 𝑝 ← 𝑖 + 1
11: QuickSort(𝐴, 𝑙𝑜𝑤, 𝑝 − 1)
12: QuickSort(𝐴, 𝑝 + 1, ℎ𝑖𝑔ℎ)

This structure makes Quick Sort simple and fast on average,
with expected time complexity of 𝑂 (𝑛 log𝑛) when balanced
partitions are formed. However, if poor pivot choices result in
unbalanced splits (e.g., always selecting the last element on sorted
input), it degrades toworst-case𝑂 (𝑛2). Randomized pivot selection
is commonly used in practice to avoid this.

TimeComplexity is: Best:𝑂 (𝑛 log𝑛), Average:𝑂 (𝑛 log𝑛),Worst:
𝑂 (𝑛2) (e.g., sorted input with fixed pivot). Space Complexity is
𝑂 (log𝑛) due to recursive stack frames. Stability: Quick Sort is not
stable. In-place: Yes; it operates within the original array. First
Described By: C. A. R. Hoare in 1961.

CSE331 - Assignment #1 CSE331 ’25, April 2025, UNIST, South Korea

3 ADVANCED SORTING ALGORITHMS
In this section, we review six advanced or modern sorting algo-
rithms: Library Sort [1], Tim Sort1, Cocktail Shaker Sort [9], Comb
Sort [4], Tournament Sort [12], and Introsort [10].

3.1 Library Sort
Library Sort, also known as Gapped Insertion Sort, improves upon
classical Insertion Sort by maintaining evenly spaced gaps within
an auxiliary array [1]. This reduces the number of element shifts
during insertion and improves average-case performance.

We follow the practical scheme proposed by Faujdar andGhrera [5],
using an auxiliary array of size (1 + 𝜀)𝑛 initially filled with sentinel
gaps. The first element is placed at the center, and subsequent el-
ements are inserted using gap-aware binary search on occupied
positions. If the target is occupied, elements shift right until a gap
is found. After every 2𝑖 insertions, a rebalancing step evenly redis-
tributes elements.

Algorithm 7 Library Sort
1: Input: Array 𝐴 of size 𝑛
2: Initialize 𝐺 ← empty array of size (1 + 𝜀)𝑛 filled with GAPs
3: Insert 𝐴[0] into center of 𝐺
4: Set 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 ← 1, 𝑟𝑜𝑢𝑛𝑑 ← 0
5: for 𝑖 = 1 to 𝑛 − 1 do
6: if 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 = 2𝑟𝑜𝑢𝑛𝑑 then
7: Rebalance 𝐺
8: 𝑟𝑜𝑢𝑛𝑑 ← 𝑟𝑜𝑢𝑛𝑑 + 1
9: Use gap-aware binary search to find insert index 𝑖
10: while 𝐺 [𝑖] is occupied do
11: 𝑖 ← 𝑖 + 1
12: Shift elements to make space at 𝑖
13: Insert 𝐴[𝑖] at position 𝑖

14: 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 + 1
15: return 𝐺 with gaps removed

Library Sort has average-case time complexity𝑂 (𝑛 log𝑛), but
may degrade to 𝑂 (𝑛2) due to excessive shifts. In ideal conditions,
it can reach 𝑂 (𝑛) in the best case. It is not stable, as rebalancing
disrupts the order of equal keys, and it is not in-place, requiring
𝑂 ((1 + 𝜀)𝑛) memory.

In practice, sorted inputs often trigger worst-case behav-
ior by inducing dense insertions and frequent rebalancing. While
asymptotically appealing, these limitations confine its use to exper-
imental or pedagogical contexts.

3.2 Tim Sort
Tim Sort is a hybrid sorting algorithm that combines the strengths
of Insertion Sort and Merge Sort. Originally designed by Tim Peters
for Python in 2002, it is now the default in Python, Java, andAndroid
due to its practical performance.

The algorithm partitions the input array into segments called
runs, which are either naturally ordered or explicitly sorted using
Insertion Sort. These sorted runs are then merged in a bottom-up
manner, similar to Merge Sort.
1https://mail.python.org/pipermail/python-dev/2002-July/026837.html

Algorithm 8 Tim Sort
1: Input: Array 𝐴 of size 𝑛
2: Partition 𝐴 into runs of size RUN
3: for each run do
4: Sort the run using Insertion Sort
5: Let run size = RUN
6: while run size < 𝑛 do
7: for each pair of adjacent runs do
8: Merge them using Merge Sort logic
9: Double the run size
10: return fully merged and sorted array

Tim Sort leverages the simplicity of Insertion Sort on small or
nearly sorted subarrays and the efficiency of Merge Sort for large-
scale merging. It guarantees a worst-case time complexity of
𝑂 (𝑛 log𝑛) and performs optimally on real-world data, often achiev-
ing best-case𝑂 (𝑛) when the input is already sorted. The algorithm
is also stable, preserving the relative order of equal elements.

However, Tim Sort is not in-place, requiring 𝑂 (𝑛) auxiliary
space for merging. Its adaptive nature and reliable performance
explain its adoption in modern standard libraries.

3.3 Cocktail Shaker Sort
Cocktail Shaker Sort, also known as Bidirectional Bubble Sort or
Ripple Sort, is a variation of Bubble Sort that improves its perfor-
mance slightly by sorting in both directions within each pass. It
was first introduced by Edward H. Friend in 1956 [7].

In standard Bubble Sort, larger elements "bubble" toward the
end of the array via repeated adjacent swaps. Cocktail Shaker Sort
enhances this behavior by also moving smaller elements toward the
beginning of the list during the same iteration. Each full iteration
consists of a forward pass (left to right) followed by a backward
pass (right to left), which helps reduce the number of necessary
iterations when the array is partially sorted.

Algorithm 9 Cocktail Shaker Sort
1: Input: Array 𝐴 of size 𝑛
2: Set 𝑙𝑒 𝑓 𝑡 ← 0, 𝑟𝑖𝑔ℎ𝑡 ← 𝑛 − 1
3: Set 𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← true
4: while 𝑠𝑤𝑎𝑝𝑝𝑒𝑑 is true do
5: 𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← false
6: for 𝑖 = 𝑙𝑒 𝑓 𝑡 to 𝑟𝑖𝑔ℎ𝑡 − 1 do
7: if 𝐴[𝑖] > 𝐴[𝑖 + 1] then
8: Swap 𝐴[𝑖] and 𝐴[𝑖 + 1]
9: 𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← true
10: 𝑟𝑖𝑔ℎ𝑡 ← 𝑟𝑖𝑔ℎ𝑡 − 1
11: for 𝑖 = 𝑟𝑖𝑔ℎ𝑡 downto 𝑙𝑒 𝑓 𝑡 + 1 do
12: if 𝐴[𝑖] < 𝐴[𝑖 − 1] then
13: Swap 𝐴[𝑖] and 𝐴[𝑖 − 1]
14: 𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← true
15: 𝑙𝑒 𝑓 𝑡 ← 𝑙𝑒 𝑓 𝑡 + 1
16: return 𝐴

https://mail.python.org/pipermail/python-dev/2002-July/026837.html

CSE331 ’25, April 2025, UNIST, South Korea Jeonghoon Park (20201118)

Cocktail Shaker Sort retains the simplicity and stability of Bubble
Sort, but reduces redundant passes by checking both ends of the list
in each iteration. While it remains inefficient for large unsorted data
due to its quadratic time complexity of𝑂 (𝑛2) in the average and
worst cases, it performs slightly better on partially sorted inputs.
When the array is already sorted, it terminates early, achieving best-
case performance of 𝑂 (𝑛). The algorithm is stable, preserves
element order for equal values, and is in-place, requiring only
constant 𝑂 (1) auxiliary space.

3.4 Comb Sort
Comb Sort is a refinement of Bubble Sort introduced by Włodz-
imierz Dobosiewicz in 1980. It addresses a key inefficiency of Bubble
Sort—turtles, which are small elements near the end of the list that
require many iterations to move forward.

The core idea is to compare and swap elements that are a fixed
distance apart, called the gap, which decreases over time. Initially,
the gap is set to the length of the array and is reduced by a shrink
factor—typically around 1.3—after each pass. As the gap approaches
1, Comb Sort behaves similarly to Bubble Sort but with most large
out-of-place elements already moved closer to their correct posi-
tions.

Algorithm 10 Comb Sort
1: Input: Array 𝐴 of size 𝑛
2: Set 𝑔𝑎𝑝 ← 𝑛, 𝑠ℎ𝑟𝑖𝑛𝑘 ← 1.3, 𝑠𝑜𝑟𝑡𝑒𝑑 ← false
3: while not 𝑠𝑜𝑟𝑡𝑒𝑑 do
4: 𝑔𝑎𝑝 ← ⌊𝑔𝑎𝑝/𝑠ℎ𝑟𝑖𝑛𝑘⌋
5: if 𝑔𝑎𝑝 ≤ 1 then
6: 𝑔𝑎𝑝 ← 1
7: 𝑠𝑜𝑟𝑡𝑒𝑑 ← true
8: for 𝑖 = 0 to 𝑛 − 𝑔𝑎𝑝 − 1 do
9: if 𝐴[𝑖] > 𝐴[𝑖 + 𝑔𝑎𝑝] then
10: Swap 𝐴[𝑖] and 𝐴[𝑖 + 𝑔𝑎𝑝]
11: 𝑠𝑜𝑟𝑡𝑒𝑑 ← false
12: return 𝐴

Comb Sort improves the efficiency of Bubble Sort, particularly
on inputs with many small values at the end. Although it still
exhibits worst-case time complexity of 𝑂 (𝑛2), its average-case
performance is 𝑂 (𝑛 log𝑛) when using an optimal shrink factor.
It also achieves near-linear time 𝑂 (𝑛) in the best case when the
input is already sorted.

The algorithm is not stable, as swaps may reorder equal ele-
ments, but it is in-place and requires only 𝑂 (1) auxiliary space.

3.5 Tournament Sort
Tournament Sort is a comparison-based sorting algorithm that
organizes input elements into a complete binary tree structure,
known as a tournament tree. Each element is initially placed at a
leaf, and each internal node stores the smaller (i.e., “winning”) of
its two children. The minimum element is thus located at the root.

After extracting the root, the winner’s original leaf is replaced
with a sentinel value, and the path from that leaf to the root is up-
dated to reflect the new tournament result. This process is repeated
𝑛 times until all elements are extracted in sorted order.

Algorithm 11 Tournament Sort
1: Input: Array 𝐴 of size 𝑛
2: Build complete binary tree 𝑇 with 𝑛 leaves storing elements of

𝐴

3: for each internal node do
4: Store minimum of its two children
5: for 𝑖 = 1 to 𝑛 do
6: Let𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝑇 [1] (the root)
7: Output𝑤𝑖𝑛𝑛𝑒𝑟 to result
8: Replace winner’s original leaf with∞
9: Update tree values upward along winner’s path
10: return sorted result

Tournament Sort has a consistent time complexity of𝑂 (𝑛 log𝑛)
in all cases, as each insertion and update requires traversing from a
leaf to the root in a binary tree of depth log𝑛. However, the over-
head of maintaining a complete tree makes it slower in practice
than most 𝑂 (𝑛 log𝑛) sorts.

The algorithm is not in-place, requiring 𝑂 (𝑛) auxiliary space
for the tree, which contains approximately 2𝑛 nodes. While it can be
made stable by consistently breaking ties in favor of the left child,
such behavior depends on implementation details and language-
specific min-comparison behavior. Due to its overhead, Tournament
Sort is rarely used for internal sorting but remains useful for exter-
nal sorting and stream merging.

3.6 Introsort
Introspective Sort, or Introsort, is a hybrid sorting algorithm intro-
duced by David Musser that starts with Quick Sort and switches
to Heap Sort if the recursion depth exceeds a threshold (typically
2 log𝑛), ensuring worst-case time complexity 𝑂 (𝑛 log𝑛) while
preserving Quick Sort’s average-case performance.

It applies Quick Sort recursively, monitoring the depth to prevent
unbalanced partitions. If the depth limit is reached, it falls back to
Heap Sort. For small subarrays, Insertion Sort is used instead. This
adaptive approach balances speed and reliability, making Introsort
suitable for general-purpose use.

Algorithm 12 Introsort
1: procedure Introsort(𝐴, 𝑝 , 𝑟 , 𝑑𝑒𝑝𝑡ℎ_𝑙𝑖𝑚𝑖𝑡)
2: if 𝑟 − 𝑝 + 1 ≤ threshold then
3: Use Insertion Sort on 𝐴[𝑝 . . . 𝑟]
4: else if 𝑑𝑒𝑝𝑡ℎ_𝑙𝑖𝑚𝑖𝑡 = 0 then
5: Use Heap Sort on 𝐴[𝑝 . . . 𝑟]
6: else
7: 𝑞 ← Partition(𝐴, 𝑝 , 𝑟)
8: Introsort(𝐴, 𝑝 , 𝑞 − 1, 𝑑𝑒𝑝𝑡ℎ_𝑙𝑖𝑚𝑖𝑡 − 1)
9: Introsort(𝐴, 𝑞 + 1, 𝑟 , 𝑑𝑒𝑝𝑡ℎ_𝑙𝑖𝑚𝑖𝑡 − 1)

By adapting to both input structure and recursion depth, In-
trosort avoids Quick Sort’s worst-case scenarios while remain-
ing fast on typical inputs. It is not stable, but in-place and re-
quires only 𝑂 (log𝑛) auxiliary space. It is the algorithm behind
std::sort in C++ standard libraries due to its performance and
robustness.

CSE331 - Assignment #1 CSE331 ’25, April 2025, UNIST, South Korea

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental Environment
All benchmarks were conducted on a MacBook Pro (2023, 14-
inch) equipped with an Apple M2 Pro chip featuring a 10-core
CPU, running macOS 15.4. All sorting algorithms were imple-
mented in C++17 and compiled using Apple Clang (g++) with the
-O2 optimization flag to ensure reasonable performance tuning.

The benchmarking framework was written in Python, and au-
tomated the full evaluation pipeline including compilation, exe-
cution, timing measurements [11], and output validation.

4.2 Performance Across Algorithms
Method. Each sorting algorithm was evaluated on the same

randomly generated dataset of size 𝑛 = 106. The benchmark was
repeated 10 times per algorithm, and the average runtime was
recorded. Figure 1 shows the latency for all methods, revealing
clear performance tiers and highlighting the relative efficiency of
each algorithm.

103 104 105 106

Input Size (n)

10 4

10 3

10 2

10 1

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Execution Time on random Input (All Algorithms)
bubble_sort
cocktail_shaker_sort
comb_sort
heap_sort
insertion_sort
intro_sort
library_sort

merge_sort
quick_sort
quick_sort_random
selection_sort
tim_sort
tournament_sort

Figure 1: Execution Time for Random Inputs

Algorithms with log-linear complexity. The following algo-
rithms have average-case time complexity of O(𝑛 log𝑛) and per-
form efficiently even on large input sizes.

Merge Sort divides the array into halves recursively and merges
sorted subarrays in linear time. Its consistent and stable perfor-
mance makes it a reliable benchmark.

Heap Sort builds a max heap and repeatedly extracts the max-
imum element. It avoids extra memory allocation, but performs
slightly slower due to non-local access patterns.

Quick Sort partitions the array using a fixed pivot, last element.
Though it can degrade on sorted inputs, it performs well on random
data with balanced splits.

Quick Sort (RandomPivot) selects the pivot randomly to avoid
worst-case scenarios. It achieves stable log-linear performance re-
gardless of input structure.

Intro Sort begins as Quick Sort and switches to Heap Sort if
recursion depth exceeds a threshold. This hybrid approach guar-
antees worst-case log-linear behavior while maintaining practical
speed.

Tim Sort detects ascending or descending runs andmerges them
efficiently. By combining Insertion Sort for small runs and Merge

Sort for merging, it achieves excellent real-world performance with
log-linear guarantees.

Library Sort inserts elements into a partially filled array using
binary search and rebalancing. Our improved version approaches
log-linear time, though its gap management still incurs overhead
compared to other optimized algorithms.

Comb Sort improves on Bubble Sort by eliminating small dis-
ordered elements early using a shrinking gap. While not strictly
log-linear in the worst case, it performs comparably to faster algo-
rithms in random input scenarios.

Algorithms with quadratic complexity. These algorithms
have time complexity of O(𝑛2) and become inefficient as the input
size grows.

Bubble Sort repeatedly swaps adjacent elements. This results
in 𝑛2 comparisons, making it highly inefficient.

Insertion Sort builds a sorted section by shifting larger elements
to the right. Although effective for nearly sorted data, it is costly
on random input.

Selection Sort selects the smallest remaining element in each
pass. It performs a fixed number of comparisons and is consistently
among the slowest.

Cocktail Shaker Sort improves on Bubble Sort by alternating
forward and backward passes. This bidirectional approach slightly
reduces the number of iterations, but the overall time complexity
remains quadratic, with performance still far behind log-linear
algorithms.

Tournament Sort theoretically has log-linear complexity, but in
practice performs poorly due to heavy overhead from maintaining
and updating a complete binary tree. For each extraction, multiple
full-width data copies occur, resulting in performance closer to that
of quadratic algorithms under random input.

Table 1: Latency for Random Inputs (in seconds)

Algorithm 𝑛 = 103 𝑛 = 104 𝑛 = 105 𝑛 = 106

Merge Sort 0.0001000 0.0009431 0.0098381 0.1078913
Heap Sort 0.0000323 0.0004130 0.0057043 0.0803684
Bubble Sort 0.0003324 0.0271842 8.5452850 916.6450000
Insertion Sort 0.0000888 0.0082530 0.8353202 83.6130300
Selection Sort 0.0008122 0.0516557 2.3630430 184.6850000
Quick Sort 0.0000325 0.0003742 0.0044425 0.0528438
Quick Sort (Random) 0.0000378 0.0004457 0.0051551 0.0602114
Library Sort 0.0000721 0.0008245 0.0123183 0.1386819
Cocktail Shaker Sort 0.0002524 0.0200263 5.2499610 558.3070000
Tim Sort 0.0000243 0.0002927 0.0034355 0.0407254
Comb Sort 0.0000367 0.0004937 0.0060670 0.0745422
Tournament Sort 0.0000558 0.0006971 0.0098557 0.1399134
Intro Sort 0.0000250 0.0003273 0.0040994 0.0491607

Summary. As shown in Table 1 and Figure 1, the algorithms
clearly separate into two performance tiers. Among all tested meth-
ods, Tim Sort consistently outperformed others across all input
sizes, confirming its exceptional efficiency on unstructured data.
Intro Sort ranked second overall in performance and is notable for
being the basis of std::sort in the C++ standard library.

CSE331 ’25, April 2025, UNIST, South Korea Jeonghoon Park (20201118)

4.3 Performance Sensitivity to Input Order
Method. Each algorithm was tested on three types of input: 50%

partially sorted, fully sorted in ascending order, and fully sorted in
descending order. Arrays were of type int, and execution time was
measured for 𝑛 ∈ {103, 104, 105, 106}. Each configuration was run
10 times and averaged.

Grouped line plots illustrate how input order affects runtime,
highlighting which algorithms benefit from existing order and
which ones degrade under structured inputs.

103 104 105 106

Input Size (n)

10 5

10 4

10 3

10 2

10 1

100

101

102

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Execution Time on partial_50 Input (All Algorithms)
bubble_sort
cocktail_shaker_sort
comb_sort
heap_sort
insertion_sort
intro_sort
library_sort

merge_sort
quick_sort
quick_sort_random
selection_sort
tim_sort
tournament_sort

Figure 2: Execution Time for 50% Partial Sorted Inputs

Unexpected Behavior at Small Scales. On partially sorted in-
puts of size 𝑛 = 103, Insertion Sort ranked as the second fastest
algorithm, outperforming several O(𝑛 log𝑛) methods. This behav-
ior can be attributed to its low overhead and tight inner loop. For
small inputs, the absolute number of required shifts is limited, and
branch prediction and memory locality are highly favorable. In con-
trast, more complex algorithms like Merge Sort or Heap Sort incur
fixed setup costs (e.g., recursion, heapification) that outweigh their
asymptotic advantages at small scales. Thus, despite its quadratic
worst-case complexity, Insertion Sort can outperform log-linear
algorithms when input size is small and partially ordered.

103 104 105 106

Input Size (n)

10 5

10 3

10 1

101

103

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Execution Time on sorted_asc Input (All Algorithms)
bubble_sort
cocktail_shaker_sort
comb_sort
heap_sort
insertion_sort
intro_sort
library_sort

merge_sort
quick_sort
quick_sort_random
selection_sort
tim_sort
tournament_sort

Figure 3: Execution Time for Ascending Sorted Inputs

Ascending Sorted Inputs. Figure 3 shows the performance of
all algorithms on ascending sorted inputs. In this scenario, several
algorithms achieve their best-case behavior due to minimal disorder
in the data.

Insertion Sort reaches its optimal O(𝑛) time, as no shifts are
needed. Our measurements confirm that it becomes one of the
fastest algorithms for sorted input, with latency dropping to nearly
zero even at large scales.

Cocktail Shaker Sort terminates after a single forward and
backward pass, achieving near-linear runtime.

Quick Sort (with last-element pivot) performs poorly. On sorted
input, its partitions becomemaximally unbalanced, leading toworst-
case O(𝑛2) behavior. This causes significant latency spikes despite
the input being fully ordered.

Library Sort also slows down on sorted inputs. Although it has
a theoretical linear best case, our measurements show that frequent
insertions into dense areas and delayed rebalancing cause it to
perform worse than on random input.

103 104 105 106

Input Size (n)

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Execution Time on sorted_desc Input (All Algorithms)
bubble_sort
cocktail_shaker_sort
comb_sort
heap_sort
insertion_sort
intro_sort
library_sort

merge_sort
quick_sort
quick_sort_random
selection_sort
tim_sort
tournament_sort

Figure 4: Execution Time for Descending Sorted Inputs

Descending Sorted Inputs. Figure 4 illustrates the performance
of each algorithm on reverse-sorted input. This case often trig-
gers worst-case behavior in insertion-based or pivot-sensitive algo-
rithms, leading to significant slowdowns.

Insertion Sort suffers a dramatic performance drop. On de-
scending input, every new element must be shifted across the entire
sorted portion, resulting in O(𝑛2) time. As shown in our measure-
ments, latency increased by over 400× compared to the ascending
case.

Bubble Sort similarly reaches its worst-case behavior. The ab-
sence of early termination forces all comparisons and swaps, mak-
ing it one of the slowest algorithms on descending input.

Quick Sort again performs poorly due to unbalanced parti-
tions caused by fixed pivot selection. The recursive depth increases
significantly, and performance degrades to quadratic time, nearly
doubling its latency compared to the random input.

Tim Sort, in contrast, remains robust. It quickly identifies long
descending runs and reverses them efficiently. As a result, its per-
formance remains nearly identical to the ascending case.

CSE331 - Assignment #1 CSE331 ’25, April 2025, UNIST, South Korea

4.4 Performance Sensitivity to Data Type
Method. Each algorithm was benchmarked on arrays of size

𝑛 = 106, using identical values cast to four types: int, long long,
float, and double. All values were uniformly sampled integers in
the range [0, 106), ensuring consistent content across types.

This isolates the impact of data representation and arithmetic
overhead, while avoiding rounding artifacts from floating-point
inputs.

Table 2: Latency by Data Type for 106 Random Inputs

Algorithm int long long float double

Merge Sort 0.1052s 0.1172s 0.1288s 0.1405s
Heap Sort 0.0817s 0.0900s 0.1005s 0.1064s
Bubble Sort 921.3660s 926.2290s 1113.9800s 1127.9900s
Insertion Sort 72.1336s 77.4562s 74.7377s 81.7258s
Selection Sort* 175.8300s 232.0120s 245.9670s 293.1080s
Quick Sort 0.0534s 0.0526s 0.0650s 0.0652s
Quick Sort (Random) 0.0584s 0.0581s 0.0703s 0.0706s
Library Sort 0.1384s 0.1528s 0.1607s 0.1808s
Cocktail Shaker Sort 560.8050s 562.9870s 683.0070s 702.3440s
Tim Sort 0.0403s 0.0442s 0.0638s 0.0667s
Comb Sort 0.0760s 0.0759s 0.0913s 0.0927s
Tournament Sort* 0.2014s 0.2679s 0.2511s 0.4492s
Intro Sort 0.0492s 0.0494s 0.0611s 0.0615s

Impact of Numeric Type on Sorting Performance. Although
long long occupies 64 bits and int only 32 bits, most algorithms
exhibited nearly identical performance. As a result, integer bit-
width had negligible impact on sorting latency.

Floating-Point Computation as the PrimaryOverhead. Com-
pared to integer types, both float and double introduced consis-
tent slowdowns across all algorithms. This overhead stems from
two main sources: (1) floating-point comparisons are generally
slower due to hardware complexity, and (2) arithmetic operations
incur additional cost from rounding, normalization, and precision
handling. Interestingly, double did not perform significantly worse
than float, suggesting that logic overhead—not data size—is the
dominant factor. This slowdown is further amplified on memory-
bound algorithms, where increased operand size results in higher
cache miss rates and memory transfer latency. On modern architec-
tures, even small increases in per-element size can lead to dispropor-
tionate performance drops due to vectorization and pipeline stalls.
Thus, algorithmic sensitivity to data type is not just computational
but also deeply architectural.

Exceptions: Bit-Width as a Bottleneck in Select Algorithms.
While most algorithms are bottlenecked by comparisons, a few are
sensitive to data size due to frequent element movement. In partic-
ular, Selection Sort performs O(𝑛2) swaps, so increasing element
width leads to more memory traffic and cache stress. Tournament
Sort maintains a binary tree of 2𝑛 full-width elements, amplifying
memory transfer overhead with wider types. In these cases, perfor-
mance degradation is primarily due to memory movement rather
than computation.

4.5 Stability Analysis
To assess sorting stability, we generated inputs of 1,000 random
(value, index) pairs with duplicate values [0, 50) but unique
original indices. Each algorithm was run 10 times, and marked
Stable only if it preserved the relative order of equal elements in
all trials.

Table 3: Stability Results

Algorithm Stability Algorithm Stability

Merge Sort Stable Library Sort Unstable
Heap Sort Unstable Cocktail Shaker Sort Stable
Bubble Sort Stable Tim Sort Stable
Insertion Sort Stable Comb Sort Unstable
Selection Sort Unstable Tournament Sort Stable*
Quick Sort Unstable Intro Sort Unstable

Stable Algorithms. Merge Sort, Insertion Sort, Bubble Sort,
Cocktail Shaker Sort, and Tim Sort consistently preserved order
among equal elements.

Unstable Algorithms. Heap Sort, Selection Sort, Quick Sort,
Library Sort, Comb Sort, and Intro Sort all showed unstable behav-
ior, mainly due to swaps and partitioning logic that disrupt relative
positions.

Stability Sensitivity in Tournament Sort. Tournament Sort
was stable in our tests, but this depends on how tie-breaking be-
tween equal values is handled. Since std::min does not guarantee
a consistent order for equal inputs [3], we explicitly enforced left-
child preference to ensure stable behavior.

4.6 Memory Usage Across Algorithms
Method. Each algorithm was tested on random input of size 𝑛 =

105 using integer arrays. Memory usagewas sampled at three points:
before loading the input, after loading the input into a std::vector,
and at peak usage during sorting. We define vector_only as the
difference between memory after and before loading the input, and
sort_overhead as the difference between the sorting peak and the
vector baseline.

In all memory trace graphs, the blue segment represents mem-
ory usage during vector construction, and the red segment shows
memory fluctuations during sorting.

0 2 4 6 8
Time (ms)

1200

1400

1600

1800

2000

M
em

or
y

(K
B)

Memory Usage with Phases - quick_sort

Figure 5: Quick Sort Memory Usage (KB)

CSE331 ’25, April 2025, UNIST, South Korea Jeonghoon Park (20201118)

Table 4: Memory Usage (KB) for Random Inputs (𝑛 = 105)

Algorithm Vector Only Sort Overhead

Merge Sort 1043.2 947.2
Heap Sort 1024.0 0.0
Bubble Sort 1028.8 0.0
Insertion Sort 1014.4 0.0
Selection Sort 1017.6 0.0
Quick Sort 1020.8 0.0
Quick Sort (Random) 1022.4 0.0
Library Sort 1017.6 2601.6
Tim Sort 1024.0 476.8
Cocktail Shaker Sort 1014.4 0.0
Comb Sort 1011.2 0.0
Tournament Sort 1011.2 1454.4
Intro Sort 1020.8 0.0

In-Place Sorting Verification. The Vector Only column in-
dicates memory used to store 100,000 integers in a std::vector,
typically around 1010–1040KB. Algorithms such as Bubble Sort,
Insertion Sort, Selection Sort, Heap Sort, and Quick Sort (Fig-
ure 5) reported zero additional memory usage, confirming they are
in-place.

Expected Linear Overheads. Merge Sort showed 947KB of
overhead, which closely matches the memory required to allocate
an auxiliary array of the same size as the input vector. Tim Sort,
a hybrid of Insertion and Merge Sort, added 476.8 KB of overhead.
This moderate increase likely arises from allocating temporary
buffers to store sorted runs and merge segments efficiently, though
not for the full array at once. Tournament Sort incurred over
1.4MB of additional memory usage. This is expected given its use
of a binary tree structure for comparisons, which requires roughly
2𝑛 space to represent internal nodes and leaves, effectively doubling
the input size in memory.

0 2 4 6 8 10 12 14
Time (ms)

1000

1500

2000

2500

3000

3500

4000

4500

M
em

or
y

(K
B)

Memory Usage with Phases - library_sort

Figure 6: Library Sort Memory Usage (KB)

MemoryGrowth Pattern in Library Sort. As shown in Figure 6,
the memory trace of Library Sort exhibits four distinct jumps during
the sorting phase. These spikes correspond to repeated reallocations
triggered by gap exhaustion as elements are inserted. Each time
the current array becomes too full, a larger array is allocated and
the existing elements are copied over. The final jump likely results
from compaction or copying of the sorted output.

4.7 Accuracy Analysis
Method. Accuracy was evaluated using the adjacent pair viola-

tion rate, computed as the proportion of index pairs (𝑖, 𝑖 + 1) in the
sorted output where𝐴[𝑖] > 𝐴[𝑖 + 1]. For a result array of size 𝑛, we
counted the number of such violations and defined the accuracy
score as:

Accuracy = 1 − # of violations
𝑛 − 1

This metric was measured alongside runtime during the experi-
ments in Sections 4.2 and 4.3.

Table 5: Accuracy and runtime of Library Sort

Size Input Type Time (s) Accuracy (%)

103 partial_50 0.000406 99.20
103 random 0.000072 98.80
103 sorted_asc 0.001195 100.00
103 sorted_desc 0.000826 100.00

104 partial_50 0.026388 99.24
104 random 0.000825 99.57
104 sorted_asc 0.102631 100.00
104 sorted_desc 0.063526 100.00

105 partial_50 2.538908 99.31
105 random 0.012318 99.27
105 sorted_asc 9.880547 100.00
105 sorted_desc 6.584756 100.00

106 partial_50 289.247667 99.02
106 random 0.138682 99.13
106 sorted_asc 1175.510000 100.00
106 sorted_desc 801.178000 100.00

Overall Accuracy Result. All algorithms except Library
Sort achieved perfect accuracy (100%) across all inputs. Table 5
summarizes the accuracy of Library Sort across various input sizes
and distributions.

Error Characteristics of Library Sort. Library Sort showed mi-
nor violations (typically under 1%) on random and partially sorted
inputs. These errors are not due to incorrect final ordering, but
rather due to the way we define accuracy: as the absence of adja-
cent pair inversions. In Library Sort, when a newly inserted element
causes a long rightward shift or when rebalancing is delayed, tem-
porary local disorder can occur. This may leave a few inversions
unresolved when the algorithm terminates, especially if the inser-
tion density near the end becomes high and a final rebalance does
not take place.

Perfect Accuracy on Sorted Inputs. When the input is already
sorted—either in ascending or descending order—each new element
is inserted in the correct position without needing to shift other
elements or resolve conflicts. Because of this, Library Sort can
complete without creating any local disorder in the array. As a
result, the final output has no adjacent violations, and the algorithm
achieves exactly 100% accuracy in these cases.

CSE331 - Assignment #1 CSE331 ’25, April 2025, UNIST, South Korea

References
[1] M. A. Bender, M. Farach-Colton, and M. A. Mosteiro. 2006. Insertion Sort is O(n

log n). Theory of Computing Systems 39 (2006), 391–397.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3rd ed.). MIT Press.
[3] cppreference contributors. 2024. std::min - cppreference.com. https://en.

cppreference.com/w/cpp/algorithm/min.
[4] W. Dobosiewicz. 1980. An Efficient Variation of Bubble Sort. Unpublished report

or workshop paper.
[5] Neetu Faujdar and Satya Prakash Ghrera. 2015. A detailed experimental analysis

of library sort algorithm. 2015 Annual IEEE India Conference (INDICON) (2015),
1–6. doi:10.1109/INDICON.2015.7443165

[6] G. E. Forsythe. 1964. Algorithms. Commun. ACM 7, 6 (1964), 347–349.
[7] E. H. Friend. 1956. Sorting on Electronic Computer Systems. Journal of the ACM

(JACM) 3, 3 (1956), 134–168.
[8] C. A. R. Hoare. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7 (1961), 321.
[9] Donald E. Knuth. 1998. The Art of Computer Programming: Sorting and Searching,

Volume 3. Addison-Wesley Professional.
[10] David R. Musser. 1997. Introspective Sorting and Selection Algorithms. Software:

Practice and Experience 27, 8 (1997), 983–993.
[11] Python Software Foundation. 2024. time — Time access and conversions. https:

//docs.python.org/3/library/time.html.
[12] Alexander Stepanov and Allan Kershenbaum. 1986. Using Tournament Trees to

Sort. Technical Report 86–13. Polytechnical Institute of New York, CATT.

https://en.cppreference.com/w/cpp/algorithm/min
https://en.cppreference.com/w/cpp/algorithm/min
https://doi.org/10.1109/INDICON.2015.7443165
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

	1 PROBLEM STATEMENT
	2 BASIC SORTING ALGORITHMS
	2.1 Merge Sort
	2.2 Heap Sort
	2.3 Bubble Sort
	2.4 Insertion Sort
	2.5 Selection Sort
	2.6 Quick Sort

	3 ADVANCED SORTING ALGORITHMS
	3.1 Library Sort
	3.2 Tim Sort
	3.3 Cocktail Shaker Sort
	3.4 Comb Sort
	3.5 Tournament Sort
	3.6 Introsort

	4 EXPERIMENTAL RESULTS AND ANALYSIS
	4.1 Experimental Environment
	4.2 Performance Across Algorithms
	4.3 Performance Sensitivity to Input Order
	4.4 Performance Sensitivity to Data Type
	4.5 Stability Analysis
	4.6 Memory Usage Across Algorithms
	4.7 Accuracy Analysis

	References

